(transverse looking)of the“I have a stick ,I
take it half (or cut it half) every day ,I can't finish it forever and forever”.
↓
Round shape(or universal joint)looking of the“I have a stick ,I take it half (or cut it half) every day ,I can't
finish it forever and forever”
↓
Now I take 50 point to do 4 layers .The first layer is the center’s too
extreme. The second layer is the future too extreme(any one of the 7
points)
↓
The first layer is the center’s too extreme.
It keep “bear”:
↓
↓
Anyone could be the
center’s too extreme relatively.
I randomly fine one and give it an
English name that hector.
If I set the hector is the center
too extreme as an new “one”
The new comer that hector would
“bear” :
Again,I randomly fine
one and give it an English name that Achilles .
The new comer
that Achilles
would “bear”:
When :
1÷7=0.142857
0.142857 × 1 = 0.142857
0.142857 × 2 = 0.285714
0.142857 × 3 =0.428571
0.142857 × 4 = 0.571428
0.142857 × 5 =0.714285
0.142857 × 6 = 0.857142
0.142857 × 7 = 0.999999=1
1÷7=0.142857
0.142857 × 1 = 0.142857
0.142857 × 2 = 0.285714
0.142857 × 3 =0.428571
0.142857 × 4 = 0.571428
0.142857 × 5 =0.714285
0.142857 × 6 = 0.857142
0.142857 × 7 = 0.999999=1
The 142857 would
keep cycle.
The
following I take from “Wikipedia”
http://en.wikipedia.org/wiki/142857_(number)
1 × 142,857 = 142,857
2 ×
142,857 = 285,714
3 ×
142,857 = 428,571
4 ×
142,857 = 571,428
5 × 142,857
= 714,285
6 ×
142,857 = 857,142
7 ×
142,857 = 999,999
If you multiply by an integer greater than 7, there
is a simple process to get to a cyclic permutation of 142857. By adding the
first six digits (ones through hundred thousands) to the remaining digits and
repeating this process until you have only the six digits left, it will result
in a cyclic permutation of 142857
142857 ×
8 = 1142856
1 +
142856 = 142857
142857 ×
815 = 116428455
116 +
428455 = 428571
1428572
= 142857 × 142857 = 20408122449
20408 +
122449 = 142857
Multiplying by a multiple of 7 will result in 999999
through this process
142857 ×
74 = 342999657
342 +
999657 = 999999
If you square the last three digits and subtract the
square of the first three digits, you also get back a cyclic permutation of the
number.
8572
= 734449
1422
= 20164
734449 − 20164 = 714285
It is the repeating part in the decimal expansion of the rational number 1/7 = 0.142857. Thus, multiples
of 1/7 are simply repeated copies of the corresponding multiples of 142857:
1 ÷ 7 =
0.142857
2 ÷ 7 =
0.285714
3 ÷ 7 =
0.428571
4 ÷ 7 =
0.571428
5 ÷ 7 =
0.714285
6 ÷ 7 =
0.857142
7 ÷ 7 = 0.999999
8 ÷ 7 =
1.142857
9 ÷ 7 =
1.285714
The figure could explain the
142857
If I only “recognize” the points:
在前面的章节中,我们也可以从奇偶数在加减法和乘除法中不同的对冲数序观察到七这个数的特别之处。
从3×9=27 ,4×8=32中去发现七的这个特别之处很明显:
如下是放大图:
如上这些案例表明,7在某种情况下,七可以是奇数的开始。但偶数的情况就不同了,偶数依然是由二开始。为什么会有这样现象?
当七开平方时,是大衍之数,也就是七自己乘以自己的时候得到了49,7×7=49。这个九也是意味着七自乘的时候达到了数的尽头。
假设这世上只有一二三四五六,并假设这世上还没有出现七八九。也就是说假如我设六进制,那么在此六进制中,但凡对冲两数的和为七,在这个六进制中,因为3+4=7三和四是对冲数,2+5=7二和五是对冲数,1+6=7一和六是对冲数。
以上观察发现,七可以是管理六进制的一个奇数,也就是说七在运行时包囊了一二三四五六,同时一和六是太阴数:
所以七会有这种特别现象,七也是唯一的一个数字和气功的气是同音字。数必至七而复,气必至七而更。我不是学中医的,不过好像中医学对7年作为生命中的每一个节点也是有说法的。
No comments:
Post a Comment